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A singularities tracking version of the GRP scheme for the integra-
tion of the Euler equaticons for compressible duct flow is presented.
Flow singularities corresponding to contact {material), shock, or
gradient discontinuities are represented by special grid points that
move through the fixed grid at the appropriate speed of propaga-
tion. The primary modification to the Eulerian GRP scheme is the
evaluation of fluxes at singular points in a unified grid containing
the union of regular Euler grid points and singular moving points.
Interactions between singular points (shock-shock or shock-contact
interactions) are treated accurately by solving the appropriate gen-
eralized Riemann problem. The new GRP/ST scheme combines
some merits of computation by characteristics, with a robustness
approaching that of a finite difference conservation laws scheme.
Shock wave phenomena illustrating the capabilities of the tracking
method are presented, demonstrating improved resolution and ac-
curacy at a given grid. ® 1934 Academic Press, Inc.

L. INTRODUCTION

The one-dimensional Euler equations that govern the adia-
batic time-dependent flow of an inviscid fluid in a duct of
varying cross section admit solutions that may contain hydrody-
namic discontinuities of three types: a shock discontinuity, a
contact discontinuity, and a discontinuity in spatial gradients
of flow variables. The only exact methed for computing solu-
tions to these equations is the method of characteristics (MOC),
where the solution is constructed by integrating the differential
relations that hold along characteristic lines in (x, 7). When
hydrodynamic singularities are present in the flow, the MOC
construction is augmented by jump conditions that held at shock
or contact discontinuities; at a gradient discontinuity the flow
variables are continuous, and it propagates along a characteristic
line. The sole factor hindering the practical application of the
MOC is its excessive complexity.

It is against this background that the alternate approach of
conservation laws schemes has been extensively pursued and
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has evolved into a genre of shock-capturing higher ovder
schemes based on solutions to Riemann problems at cell inter-
faces (e.g.. [1. 2. 14]); see also | 16] for-an overview of existing
methods. Although the resolution achieved by these schemes
is remarkable, it is still unsatisfactory in problems involving a
combination of high gradiems and shock interactions. In this
study we present a ‘“‘singularities tracking’’ extension to the
high-resolution conservation laws scheme GRP [1, 2], designed
to render accurate computation through tracking of hydrody-
namic singularities as well as those resulting from their interac-
tons. A preliminary account of our method was presented in
[5] and a more comprehensive report in [6]. We precede the
description of the tracking scheme by a brief outline of the
GRP methed [I, 2].

The GRP discretisation scheme is a piecewise-linear approxi-
mation of primitive flow variables (velocity, pressure, density)
per cell, with discontinuities at cell interfaces. There is an
inherent duality in this scheme, in that both cell-interface and
cell-average values of flow variables are evaluated in the course
of integrating the hydrodynamic conservation laws. performed
in three phases as follows. In the first phase, cell-interface
values are obtained from a local MOC analysis yielding an
analytic solution to the generalized Riemann problem arising
at each cell interface. This is followed by evaluating the fluxes
of mass, momentumn, and energy at cell interfaces; in particular,
sccond-order accurate fluxes are evaluared from analytically
determined fluxes and their first time derivatives. In the second
phase, the fluxes are incorporated in a discrele time-integration
scheme for the average densities of mass, momentum, and
energy per cell. In the third phase, cell gradients of primitive
variables are advanced to the next ime level, using the time
derivatives at cell interfaces (obtained in the first phase), and
subject to monotonicity-preserving constraints [1, 2, 14]. The
combined result is a second-order accurate integration of the
hydrodynamic conservation laws.
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Our GRP/ST “‘singularities tracking™ scheme is designed
to exploit the cell-interface solutions to generalized Riemann
problems performed in phase I of the GRP scheme. To this
effect we assign a special (moving) grid point to each tracked
discontinuity. The resulting *‘unified grid’’ comprises a union
of the underlying Eulerian grid and all moving “*singularity
points.”” The analytic GRP solution at each unified grid point
provides both the velocity and the acceleration of every shock.
contact, or gradient discontinuity arising in the solution to the
associated Riemann problem [1. 2]; thus. selection of the appro-
priate wave at a tracked singularity point enables a straightfor-
ward second-order time integration of its trajectory. In order
to avoid formation of excessively small cells in the unified
erid, a Eulerian grid point located within a fraction 8 of cell
size from a moving singularity point is temporarily deleted
(typically. 8 = 0.25). The deletion (resp., restoration) of Eu-
lerian grid points is performed as a celi-merging (resp., cell-
splitting) operation, conserving total mass, momentum, and
energy.

The tracking of waves resulting from local Riemann prob-
lems has been formerly suggested by Harten and Hyman [7]
as a “‘self-adjusting”” grid scheme for the Godunov method.
However, their extended ‘‘weighted-average’” wave tracking
concept does not universally reduce to explicit tracking of a
single wave {compare, e.g., Figs. 6, 10 in [7]). The feature
of combining exact shock tracking with a conservation laws
scheme was also adopted by Swartz and Wendroft [11] and
in a recent study by LeVeque and Shyue [8)], where a concise
discussion of previous work on shock fitting and shock
tracking was presented. Our scheme, however, is different
from those schemes in three important aspects. First and
foremost is the way second-order accuracy is obtained; second
is the treatment of duct flows; third is the manner by which
excessively small partial cells adjacent to tracked singularity
points are avoided.

The major feature unique to our scheme is the systematic
method by which we obtain second-order accuracy for planar
flows, as well as for duct flows. In the GRP/ST scheme. second-
order accuracy is obtained from analytically evaluated first time
derivatives of flow variables; in particular, this includes first
time derivatives of the velocity of propagation of tracked singu-
larity points. Under this unified analytic approach, generalized
Riemann problems include terms related to both linear spatial
interpolation of flow variables and to area divergence in a duct
flow. The other two shock-tracking schemes referred to above
comprise a first-order phase where conservation laws are inte-
grated using solutions to local Riemann problems, followed by
a separate phase for upgrading the accuracy level to second
order. In addition, LeVeque and Shyue [8] treat area divergence
terms in a duct flow as source terms in the planar conserva-
tion laws.

When singularity points are tracked on a grid in conjunction
with the discrete integration of conservation laws, formaticn
of small partial cells is inevitable. While our GRP/ST scheme
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circumvents this difficulty by cell-merging/cell-splitting, Le
Veque and Shyue [8] resort to a large time step alternative,
where, in the vicinity of a tracked point, the discretised conser-
vation laws are integrated via a wave propagation approach
rather than a conservation laws scheme. Swartz and Wendroif
[11] treat the integration of conservation laws in the vicinity
of a shock point, by resorting to substepping of the time integra-
tion, in order to avoid an overall reduction of the time step.
Unlike the modified time integration employed by [8, 1], our
scheme comprises a simple time-integration by a uniform time
step; formation of excessively small cells is avoided by cell
splitting/merging as outlined above.

The initiation of shock tracking in our scheme may be in
either of two modes. In mode I the shock is known to exist
from the initial conditions of the problem. and is tracked from
the beginning of the computation. In mode II. the *‘trapping’”
mode, shock-tracking is initiated at some Eulerian grid point,
when the solution to the local Riemann problem indicates the
inception of a shock of substantial intensity. Mode I also encom-
passes the case where a new shock is created by a shock
interaction (e.g., shock-contuct interaction giving rise to two
shocks).

The plan of this paper is the following. The conservation
laws and the finite-difference scheme are presented in Section
2, supplemented by the analytic derivation of time derivatives
along the shock path in Seclion 3. We conclude with five
examples demonstrating the capabilities of the GRP/ST scheme
in Section 4.

2. CONSERVATION LAWS IN A MOVING GRID

Consider the Euler equations governing the time-dependent
flow of an inviscid fluid in one space dimension x and in a duct
of smoothly varying cross-section A(x). In quasi-conservation
form, these equations are

AL U+ arun + 4 L6 =0
ot ax ax

p pu 0

U n=|pe| FUO)=| pr GU=|r| @D
pE (pE + pu 0
E=e+arf p=flpe A=A,

where p, p, e, u, E are the density, pressure, specific energy,
velocity, and tota) energy, respectively; in addition, an equation
of state p = f(p, €) is assumed.

Aiming at a finite-difference scheme for (2.1} in a mixed-
type grid where some grid points may be moving (see also {3,
4), let us consider a moving zone D, = {x|la(r) = x = b(1)}.
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Assuming that the flow in D, is smooth, we get the integral re-
lation

d ) _ a

y j AU, 1) dx = ,J AW = Ut 1y de
K g (2.2)

+ B (DABYUBN, D

— a'(HA(a(YUla(n), 0.

Using this relation in Eq. (2.1) for (aU//ar), we get the quasi-
conservation relation

4 j AU dx = [(AU ~ F(UDAT: — f AL GU A @23
dr 2 4 ax

where Ala(r). 1) = a’(r} and A(b(n), £) = b'(1).

Having ruled out the existence of a hydrodynamic discontinu-
ity (shock or contact) in the interior of D,, we consider the
cxistence of a discontinuity at either boundary of 1. The appro-
priate boundary values U(a(n), ), or U(h(z), 1} in (2.3), are
clearly the *‘inner side’” values; i.e., the right-side values at
a(t) and the left-side values at b(r). Actually, this side distinction
is immaterial Tor the mass and energy equations since they are
in conservation form, and uccording to the jump condition
obeyed by hydrodynamic discontinuities, the jump in the value
of AU — F(U}] vanishes. The momentum equation, however,
is in non-canservation form, so for this equation side distinction
is essential.

The finite-difference scheme for the integration of (2.1) is
obtained by dividing the spatial domain into cells i = 1, 2, ...,

. 1, where cell boundaries are the points xy., Xy, .oy Xio i,
Xipine o Y. The time integration is at a sequence of time
points {, = i Ar, where the magnitude of Ar is constrained by
the Courant—Friedrichs—Levy stability criterion. We denote by
U} the volume average of U(x, 1) in cell 7 at time ¢,. x%, | » denotes
the coordinate of grid point i + 1/2 at time ,. Taking the
domain D, to be cell § with possibly moving grid points at either
end, the finite-difference scheme based on (2.3) is

Up! = 25U+ AU — FUMEES

— [(AU — FUNALE (24)

] ~ il +112 +172
— 5 L6 v = GUUYZIEIAZE + AlDE))

where A, = A(xF) and the cell volume V7 is given by

Vi = J 7 A(x) dx. (2.5)
Yi-1s

-

In addition, the new coordinate of a moving grid point is
given by
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X=X AL At < 5 [dAi| (AD° (2.6)

dt iz
As in the original duct-flow GRP [2], the time-centered flux is
obtained by

AU - F(U))A]:'Iﬂf; = [(AU FUDAT e

I
+ E At E [(AU — FIUNATL » (2.7)

1, d
[GUNE = [GU e + 5 At o L&A1 P

where (d/dt) denotes the time derivative along the path of a
moving grid peint. {n evaluating this derivative, U, F(U), and
G(U) are expressed in terms of the primitive variables p, p and
i, so that (2.7) calls for the evaluation of the derivatives of
these primitive variables along the path of the grid point: in
addition, the time derivatives [(d/dt) Al 1s also required.

Consider first the time derivatives of the primitive variables,
whose evaluation constitutes an extension of the Eulerian GRP
to a scheme on a mixed grid of stationary or moving points
(see Sec. 5 of Ref. [2]). We seek the time derivative of Q(&,
1), where Q stands for p, p. or u, & is the Lagrange coordinate
defined by d€ = Al. ppdx, and the path of grid point i + 1/2
is given by the differential relation

de _

o — [Ap( — M) e

(2.8}

The derivation of (2.8) is readily obtained by considering the
relation for the moving coordinate x = x{& 1) dx = (8x/9&)
d&+ (dx/dn)y dr = A dr; Equation (2.8) then follows by substitut-

ing (dx/8&) = (Ap)™" and (d#x/3fy = u. Using the chain rule
d dé o
Q(f(f) = ( o df) Qe
we get

) _ |2
|: dt :|;=n h |:r'if Q& J‘)j|r=(

- |:Ap(u - A) %Q(‘fa f)] =

(2.9)

where (& 1) = (0, 0) denotes the origin of the local (& 1)
coordinates at {x},,». #,). Clearly, (2.9) reverts to the Eulerian
GRP when A = 0 (see Eq. (5.3) in {2]).

Now, in our scheme a moving grid point is either a contact
discontinuity or a shock discontinuity. For a contact discontinu-
ity A = u, hence in this case the second term of (2.9) vanishes
and (d()/dr),—, becomes the time derivative along the contact
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discontinuity; this time derivative constitutes the basic analytic
outcome of the iocal generalized Riemann problem at each grid
point. Hence, the case of a contact discontinuity is already
contained in the analytic framework of the existing GRP scheme
{2, 4]. The case of a shock discontinuity, by contrast, requires
further analysis and is relegated to the next section.

3. TIME DERIVATIVES ALONG A SHOCK PATH

To fix ideas. let us consider a typical generalized Riemann
problem where the wave system comprises a right shock and
a left rarefaction. The coordinates, as before, are (£ f) with the
origin located at (x}.\, 1,). Let the suffix (), refer to the (& ¢
region between the contact discontinuity and the shock, and let
( ), refer to the region ahead (to the right) of the shock. Also,
the cross-section area A{xj.»)} is simply denoted by A.

In the course of the analysis, &derivatives in region (),
are expressed in terms of time derivatives and. likewise, time
derivatives in region { ), are expressed in terms of £-derivatives.
The reason 15 that in the GRP scheme primitive variables are
approximated as plecewise-linear per cell; i.e., Q(£, 0) is linear,

so that @, and its &derivative are known; the solution to the

generalized Riemann problem then provides the time deriva-
tives [(a/dt) Q(€, 1],y in region ( ). For this derivatives-swap-
ping operation, use is made of the governing equations in La-
grange coordinate

d .9

%r(g, H=A iM(f, 1+ Atu 3.1)

T

A= A"(X)/A(X) = 1/p,

where T1s the specific volume and A is the logarithmic derivative
of the local cross-section area.

Let the Lagrange speed of propagation of the shock be d&/
dr = W. Since df = Apdx, the relation between W and the
Eulerian speed A is

A=y + 1.(A7'W). (3.2)

The expression for the time derivative of A is obtained by
Lemmuas 3.1 and 3.2, as follows.

LEMMA 3.1,

aA_ (o o - (a_)
i A(ag),+2w(ag),+A(A W) 9%/, a3

+ AW, T, + T,%(A“W).

Assume the typical wave system as before. Then

Proof. To derive (3.3) we use the chain rule (d/dr) =
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((alan + Waiag) tor the time derivative along the shock,
applying it to the right-hand side of Eg. (3.2), while taking u,
and 7, to be functions of (& 1), Using (3.1) to express time
derivatives of u(& 1) and & 1) in terms of &derivatives, we
get (3.3). Q.E.D.

To proceed, we have to relate the time derivative of (A™'W)
appearing 1n (3.3) to the flow variables. For this, we make use
of the following expression for the Lagrange shock speed

P

W=A (34

My~ U,

The time derivative of A™'W is then given by the following
lemma.

LEMMA 3.2.
Then

Assume the rypical wave svstem as before.

dowy= M((;P)
dr(A W) (u*u,.){[l—l_ 2% ] ar J

() ()

+ALATWY + i) (%)

(3.5

+A[A ' WYu,r, + g:’-uffr]} ,

where g2 = —(aplar),.

Proof.  The derivation of (3.5) starts by applying (d/dt} =
((a/an) + W(/ad) to (A7'W) as given by (3.4), getting an
expression that contains both time- and ¢-derivatives of p and
uat (), and at ( ). Using {(3.1) to express the time derivatives
at (), in terms of &derivatives, and likewise the &-derivatives
at ( )y in terms of time derivatives, and rearranging terms, we
get (3.5). Q.E.D.

Combining Lemmas 3.1 and 3.2, we have completed the
expression of (d/dr) A in terms of known values of primitive
variables and their derivatives.

One more analytic derivation is called for in the case of a
very weak shock, i.e., a sound wave. In this case. we simply
set (A7'W) = g, = g, (3.4) then reduces to the differential
relation g = (dp/du). Carrying out the derivation for a perfect
gas having a specific heats ratio y, we get

dA _ (3~ v ) _(ZZ¥ 4 (22

i = (5o G - ()0 (B)
_b ey (=] .
2CrA((_)§)r )\( > )u,c,.
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DENSITY AT T= 2000
1.0
(a)
2.0
0. 100.0
DENSITY AT T= 3800
1.0
(c)
0.0
0. 160.0

FIG. L
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DENSITY AT T= 20.00
1.0
(b)
0.0
0. 100.0
DENSITY AT T= 4600
1.0
—
{d}
0.0
0. 100.0

Sod’s problem: ¢a} at ¥ = 20 without tracking of singularities: (b) at 1 = 20 with tracking of the tail of the left-propagating rarefaction, the contact

discontinuity, and the right-propagating shock wave: {¢) a1 r = 38 with tracking: (d) at r = 46 with tracking.

4. SAMPLE PROBLEMS

In this section we present five examples illustrating the scope
and accuracy of our scheme, including tracking of shock, con-
tact and gradient discontinuities, post-interaction tracking, and
“*shock-trapping’”, i.e., racking commencing at the inception
of a shock formed by the steepening of a smooth compression
wave. In each case we track solely those singularities that are
deemed most significant.

As demonstrated below. the GRP/ST scheme yields high-
resolution computations of complex 1-D compressible flow
phenomena involving shock propagation and shock interac-
tions, with a large improvement in accuracy and resolution
relative to shock-capturing conservation-faws schemes (e.g.,
the Eulerian GRP). It is noted that in GRP/ST improved ac-
curacy and resolution are achieved at a modest increase in
computing time and coding effort relative to shock-capturing
schemes.

(2) Planar Shock Tube

Our first example is the planar shock-tube test problem sug-
gested by Sod [10]. The tube extends from x = 0 to x = 100

and is divided into 100 equal Eulerian cells. The gas (y = 1.4)
is initially at rest with p = p = | for 0 = x < 50; p = 0.1,
p = 0.125 for 50 << x = 100. We show the density profile at
t = 20 for two computations, The first one. Fig. la, with no
singularity tracking (pure Eulerian), and the second one, Fig.
Ib, with tracking of the tail characteristic of the left-propagating
rarefaction wave, the contact discontinuity, and the shock wave.
The GRP/ST computation almost coincides with the exact (self-
similar) solution.

Shock interactions in GRP/ST are shown in Figs. 1c and 1d.
where we show the density profile at two later points in time.
At t = 38 (Fig. lc), the shock has been reflected from the right
wall but has not yet reached the contact discontinuity. At t =
46 (Fig. 1d}, the shock has interacted with the contact disconti-
nuity, producing a left-propagating shock, a contact discontinu-
ity, and a right-propagating shock, of which only the first two
are tracked. since the right-propagaling shock is rather weak.

(b) Exploding Helium Sphere

This example, which is a spherical shock tube, was suggested
by Saito and Glass [9]. A helium (y = 5/3) sphere of radius
2.5 is surrounded by air (y = 7/5) and is initially at rest with
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VELOCITY AT T= .60 VELQCITY AT T= 240
40 1.0
"’.. ..............
O
-1.0 -4.0
0. 10.0 0. 1¢.0
a) (b)
DENSITY AT T= 60 DENSITY AT T= 240
3.0 3.0
_,_.—-"——‘ ....... -
0.0 0.0 e
Q. 10.0 0. 16.0

FIG. 2.

Exploding helium sphere: {a) at 1 = 0.6 with tracking of the tail of the left-propagating rarefaction. the contact discontinuity, and the right-

propagating shock wave: (b) at 1 = 2.4 with tracking of the left imploding shock. the contact discontinuity. and the right-propagating shock wave.

a pressure 18.25 times the air pressure, and a uniform density
2.523 times that of the air. The flow is considered at two
instances: (a) At + = 0.60, after the initial discontinuity has
been resolved into a left-propagating rarefaction wave, of which
we tracked the tail, and a contact discontinuity and a right-
propagating shock, both of which were tracked (see Fig. 2a).
(The tracked tail of the rarefaction wave 15 the cusp point at
both the velocity and density profiles.) (b) At r = 2.40, long
after the rarefaction wave has been reflected from the center
of the sphere and was overtaken by an imploding shock (see
Fig. 2b). The resolution in both figures is far superior to that
of a previous computation where only the contact discontinuity
was tracked [4]. An interesting mode of shock computation i
demonstrated in this case. The imploding shock formed as a
result of the overexpansion of the helium sphere (and computed
as a captured shock), overtook the left-propagating sound wave,
which bad initially been designated to track the tail of the
helium rarefaction wave; from that moment on, the computation
of the tracked sound wave reverted to that of a tracked shock.
This imploding shock is clearly visible on Fig. 2b at about
x =1L

(c) Interacting Blast Waves

This test problem was introduced by Woodward and Colella
[£5]. who analyzed it in great detail; it involves multiple asym-

metric interactions of strong blast waves. The fluid is a perfect
gas {y = 1.4) initially at rest (4, = ) between reflecting walls
in the domain () < x <C 1, and has uniform density (g, = 1).
The initial pressure is piecewise constant in three zones as
follows: in the left zone (0 << x < 0.1) the pressure is py =
1000, in the middle zone (0.1 < x < 0.9) the pressure is p; =
0.01, and in the right zone (0.9 < x << ) itis py = 100. In
the GRP/ST computation, the mesh size was a uniform
Ax = 1/200, and four singularity points were initially tracked:
the shock and contact discontinuities arising at the left and at the
right shock-tube configurations $;, C, and S, Cs, respectively,
Later, the 3‘./3’: shock interaction gives rise to two new shocks
and a new contact discontinuity, which we denote Si, §, and
C,. Still later, S, interacts with C, giving rise 1o a transmitted
shock S5 and a reflected rarefaction R {(sce Fig. 1b of [15]).
All the singularities mentioned here were tracked (except Rs
which was not treated as a singularity).

Our computational results are displayed at two points in time:
at r = 0.025 (Fig. 3a) prior to any shock interaction, and at
¢ = 0.038 (Fig. 3b) following a couple of shock interactions
as explained above. Comparing our results (Fig. 3b) with those
of PPMLR (Fig. 2h of [15}), we find a strong resemblance,
except for the left part of Rs, where our density distribution is
monotonic while that of [15] exhibits a smooth peak. Repeating
the computation with a two-fold refinement of the Eulerian grid
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VELOCITY AT T= 025
20,0
-100
0. 10
(a)
DENSITY AT T= 025
70
J 1
Sa
C m‘_[ Ca
0.0 L\
0. 10

FIG. 3.
of the right shock with the right-side contact discontinuity.

resulted in the same monotonic pattern of Ry as in Fig. 3b. This
observation is also corroborated by a shock-tracking computa-
tion of the present test problem, performed by LeVeque &
Shuye (see Fig. 13 of [8]).

Constdering the mesh in our computation compared to that
of {15]. it is apparent that the GRP/ST scheme exhibits a
significant gain in accuracy and resolution relative to untracked
schemes. While the GRP/ST unified grid consisted of a Eulerian
mesh having Ax = 1/200 augmented by (at most) seven singu-
larity points, the PPMLR [15} computation employed a grid
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VELOCITY AT T= 038
20.0
-10.0
0 1.0
(b)
DENSITY AT T= 038
7.0
{\'RT
Cy
iS5
r T
)
0.9 | S—
0. 1.0

Interacting blast waves: {a) at + = (.025, prior to the shock interaction; (b} at 1 = 0.038, following a shock-shock interaction and the interaction

consisting of 3096 points, where the mesh size varied from
Ax = 172400 to Ax = 1/9600, the finer mesh being assigned
to the R; region; moreover, the PPMLR computation resorted
to an eight-fold mesh refinement in the vicinity of flow disconti-
nuities.

(d)y Spherical Piston (Constant Velocity)

Consider the flow generated by a spherical surface expanding
at constant velocity U, starting out from the origin into a sur-

PRESSURE AT T= 50.00 PRESSURE AT T= 5000
35 35
i 1
1
| |
| .
(a) {b) 1\
ol | " |
60. 100.0 60. 100.0

FIG, 4, Spherical piston expanding at constant speed: (a) at 1 = 50 with shock tracking, (b) a1 + = 50 withour shock tracking.
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PRESSURE AT T= 70.00

5.0
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PRESSURE AT T= 7000

50

00

(b)

0.0

0. 100.0

0. 100.0

FIG. 5. Spherical piston expanding at constant acceleration: (a) at + = 70 without shock tracking: (b) at r = 70 with shock tracking.

rounding quiescent fluid. The shock Mach number was taken
as M, = 1.5 (the corresponding piston Mach number is about
M, = 1.2) and the fluid is assumed a perfect gas having vy
= 14, py = 1, and p, = 1. The computation domain {0 <
x << 100} is divided into 100 equal cells. From the classical
sofution to this self-similar flow (Taylor [12]) we obtained
the exact flow field by numerically integrating the pair of
coupled ODE’s; in Figs. 4a and 4b we compare the spatial
pressure distribution between the piston and the shock for
a tracked-shock computation and for an untracked one, with
the exact solution. The accuracy of the tracked solution near
the shock front is clearly superior to that of the untracked one.

{e) Spherical Piston (Constant Acceleration)

Consider the flow generated by a spherical surface expanding
at constant acceleration a, = 0.02465 starting out from the
origin, into a quiescent perfect gas {y = 1.4). The computation
domain (0 < x < 100} is divided into 100 equal cells. Two
computations were performed: one without shock tracking (Fig.
5a), the other (Fig. 5b) with tracking of the shock, using shock-
trapping mechanism (see Section 4 in [6]). The results are
shown at a time t = 70, where the shock is already well formed
(note that the shock inception time for the corresponding planar
piston is r. = 40 [6]). Unlike a planar accelerated piston, the
spherical one has no exact solution; hence the shock inception
time can only be assessed from the computational results. When
the trapping parameter was set to g, = 0.05 (g, = (P, — P}/
p,Ch, the shock was trapped at + = 55, and when this value
was set 10 g, = 0.10, the trapping moment moved up lo ¢ =
59. The results (in terms of p(x) at ¢ = 70) for either value
of g were virtually indistinguishable. It is concluded that
while the moment of shock inception is not accurately deter-
mined by the trapping scheme, the post-formation shocked
flow is insensitive to the precise numerical trapping moment.
As to the comparison between the two types of computa-
tions, the shock resolution in the tracked computation (Fig. 5b)

i1s clearly superior to that of the untracked computation
(Fig. 5a).
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